Calculus

Squeeze Theorem ${ }_{\text {pg } 1010 ~ S t e w a r t ~ s t h ~ e d i t i o n ~}$

Given a function $f(x)$ such that when x is arbitrarily close to a then $g(x) \leq f(x) \leq h(x)$:
Example of alternating/oscillating function: $1 \leq \sin (x) \leq 1$
If we want to find the $\lim _{x \rightarrow a} f(x)$
then we can show that the limits of its bounds $g(x)$ and $h(x)$ are equal

1. So if we show that $\lim _{x \rightarrow a} g(x)=L$ and $\lim _{x \rightarrow a} h(x)=L$
2. then since $g(x) \leq f(x) \leq h(x)$, when x is close to a then $L \leq \lim _{x \rightarrow a} f(x) \leq L$
3. So then we can conclude that $\lim _{x \rightarrow a} f(x)=L$ by the squeeze theorem

Example: Find $\lim _{x \rightarrow 0} f(x)=\lim _{x \rightarrow 0} x^{2} \sin (x)$

1. Establish your bounds: We know that $1 \leq \sin (x) \leq 1$ so $x^{2} \leq x^{2} \sin (x) \leq x^{2}$
2. Take the limit of the endpoints: $\lim _{x \rightarrow 0} \quad x^{2}=0$ and $\lim _{x \rightarrow 0} x^{2}=0$
3. Conclude: So when x is arbitrarily close to 0 then $0 \leq \lim _{x \rightarrow 0} x^{2} \sin (x) \leq 0$ so then $\lim _{x \rightarrow 0} x^{2} \sin (x)=0$ by the squeeze theorem
(0)@csusm_stemcenter

Tel:

Calculus

Intermediate Value Theorem ${ }_{\text {pg } 122 \text { stewart sth edition }}$

1. Show $f(x)$ is continuous on the closed interval $[a, b]$
2. let N be a number between $f(a)$ And $f(b)$ where $f(a) \neq f(b)$
3. Then there exists a number c in (a, b) such that $f(c)=N$
This is commonly used to show that there exists a root of an equation in a certain interval, Let $N=0^{}$

Example: Show that there is a root to $f(x)=x^{4}+x \quad 3$ in the interval $(1,2)$

1. $f(x)=x^{4}+x \quad 3$ is a polynomial therefore continuous on $[1,2]$
2. Plug in endpoints: $f(1)=1$, which is negative $f(1)<0$ and $f(2)=15$, which is positive $f(2)>0$
3. Since $f(1)<0$ and $f(2)>0$ there exists a point c in $(1,2)$ such that $f(c)=0$
xxx
(0)@csusm_stemcenter

Calculus

Rolle's Theorem ${ }_{\text {pg } 287 \text { stewart sth edition }}$

1. Show $f(x)$ is continuous on the closed interval $[a, b]$ (that is find if there are any points of discontinuity in the given interval)
2. Show that $f(x)$ is differentiable on the open interval (a, b) (continuous with no corners or cusps or any other immediate changes in slope)
3. Show $f(a)=f(b)$ then you can conclude there exists a number c in (a, b) such that $f^{\prime}(c)=0$

Example: Verify that there exists a critical point of $f(x)=2 x^{2} \quad 4 x+5$ on the interval [1,3$]$

1. $f(x)$ is a polynomial therefore continuous on (∞, ∞)
2. $f^{\prime}(x)=4 x \quad 4$ exists for all x in [1,3], hence $f(x)$ differentiable
3. $f(1)=11$ and $f(3)=11$ so $f(1)=f(3)$
so there exists a c in $(1,3)$ such that $f^{\prime}(c)=0$ by Rolle's Theorem.
4. Find such a c such that $f^{\prime}(c)=0$, so $f^{\prime}(x)=4 x \quad 4$.

$$
\begin{align*}
f^{\prime}(x) & =0 \tag{1}\\
4 x \quad 4 & =0 \tag{2}\\
4 x & =4 \tag{3}\\
x & =1 \tag{4}
\end{align*}
$$

So $c=1$, and $f^{\prime}(c)=4(1) \quad 4=4 \quad 4=0 \checkmark$ Observe that $x=1$ is in the interval $(1,3)$
(○) @csusm_stemcenter

Tel:

Calculus

Mean Value Theorem ${ }_{\text {pg } 2 \text { ss semenartsta dition }}$

1. Show $f(x)$ is continuous on the closed interval $[a, b]$
2. Show $f(x)$ is differentiable on the open interval (a, b)
3. Then there exists a number c in (a, b) such that $f^{\prime}(c)=\frac{f(b) f(a)}{b \quad a}$ that is the tangent line to $(c, f(c))$ has the same slope as the secant through $(a, f(a))$ and $(b, f(b))$

Example: Show that there exists a point in the interval $[1,3]$ such that the slope of the tangent line to that point is equal to the slope of the secant line through it's endpoints, on the curve of $f(x)=\frac{1}{x}$

1. The only discontinuity is at partition point $x=0$ which is not in $[1,3]$ so $f(x)$ is continuous on [1,3].
2. $f^{\prime}(x)=\frac{1}{x^{2}}$ is only discontinuous at partition point $x=0$ which is not in the interval $[1,3]$ so $f(x)$ is differentiable on $(1,3)$
Plug in the endpoints and find the slope through them: $f(1)=1, f(3)=\frac{1}{3}$ so $\frac{f(3) f(1)}{31}=\frac{1}{3}$
3. Then there exists a c in $[1,3]$ such that $f^{\prime}(c)=\frac{1}{3}$ so $f^{\prime}(c)=\frac{1}{c^{2}}=\frac{1}{3}$ solving we get that $c= \pm \sqrt{3}$ since $+\sqrt{3}$ is in the interval $(1,3)$ so $\mathrm{c}=+\sqrt{3}$

Tel:

Calculus

L' Hospital's Rule ${ }_{\text {pg } 3 \text { as semenastsh cation }}$

$$
\text { L'Hospital's Rule : } \lim _{x \rightarrow a} \frac{f(x)}{g(x)}=\lim _{x \rightarrow a} \frac{f^{\prime}(x)}{g^{\prime}(x)}
$$

If you are asked to take the limit of a rational equation of the form $\lim _{x \rightarrow a} \frac{f(x)}{g(x)}$ such that the limit is an ""Indeterminate Form" or of the form $\frac{\infty}{\infty}$ or $\frac{0}{0}$

1. First take the limit of the rational function and show that it is an indeterminate form:

$$
\lim _{x \rightarrow a} \frac{f(x)}{g(x)}=\frac{\infty}{\infty} \text { or } \lim _{x \rightarrow a} \frac{f(x)}{g(x)}=\frac{0}{0}
$$

2. Then take the derivative of the numerator and the denominator separately and take the limit:

$$
\text { Find } \lim _{x \rightarrow a} \frac{f^{\prime}(x)}{g^{\prime}(x)}
$$

3. If the limit gos to a number $N, 0$, or ∞ then that is your answer.
if it gives another indeterminate form i.e. $\frac{\infty}{\infty}$ or $\frac{0}{0}$
then repeat the process until the limit goes to a number, 0 or ∞.

Example: $\lim _{x \rightarrow \infty} \frac{\ln (x)}{x}$

1. Show that the limit gives an indeterminate form: $\lim _{x \rightarrow \infty} \frac{\ln (x)}{x}=\frac{\infty}{\infty}$
2. Take the derivative of the numerator and denominator separately. $\frac{d y}{d x} \ln (x)=\frac{1}{x}$ and $\frac{d y}{d x} x=1$
3. Take the limit of $\lim _{x \rightarrow a} \frac{f^{\prime}(x)}{g^{\prime}(x)} \quad \lim _{x \rightarrow \infty} \frac{1}{x}=\frac{1}{\infty}=0$

Tel:

