

Calculus

Squeeze Theorem pg 101 Stewart 8th edition

Given a function f(x) such that when x is arbitrarily close to a then $g(x) \le f(x) \le h(x)$: Example of alternating/oscillating function: $1 \le sin(x) \le 1$ If we want to find the $lim_{x\to a}f(x)$ then we can show that the limits of its bounds g(x) and h(x) are equal

- 1. So if we show that $\lim_{x\to a} g(x) = L$ and $\lim_{x\to a} h(x) = L$
- 2. then since $g(x) \le f(x) \le h(x)$, when x is close to a then $L \le \lim_{x \to a} f(x) \le L$
- 3. So then we can conclude that $\lim_{x\to a} f(x) = L$ by the squeeze theorem

1. Establish your bounds: We know that $1 \le sin(x) \le 1$ so $x^2 \le x^2 \sin(x) \le x^2$

- 2. Take the limit of the endpoints: $\lim_{x\to 0} x^2 = 0$ and $\lim_{x\to 0} x^2 = 0$
- 3. Conclude: So when x is arbitrarily close to 0 then $0 \le \lim_{x\to 0} x^2 \sin(x) \le 0$ so then $\lim_{x\to 0} x^2 \sin(x) = 0$ by the squeeze theorem

Calculus

Calculus

Calculus

Mean Value Theorem pg 288 Stewart 8th edition

- 1. Show f(x) is continuous on the closed interval [a, b]
- 2. Show f(x) is differentiable on the open interval (a, b)
- 3. Then there exists a number c in (a, b) such that $f'(c) = \frac{f(b) f(a)}{b a}$ that is the tangent line to (c, f(c)) has the same slope as the secant through (a, f(a)) and (b, f(b))

Example: Show that there exists a point in the interval [1, 3] such that the slope of the tangent line to that point is equal to the slope of the secant line through it's endpoints, on the curve of $f(x) = \frac{1}{x}$

- 1. The only discontinuity is at partition point x = 0 which is not in [1,3] so f(x) is continuous on [1,3].
- 2. $f'(x) = \frac{1}{x^2}$ is only discontinuous at partition point x = 0 which is not in the interval [1,3] so f(x) is differentiable on (1,3) Plug in the endpoints and find the slope through them: f(1) = 1, $f(3) = \frac{1}{3}$ so $\frac{f(3)}{3} \frac{f(1)}{1} = \frac{1}{3}$
- 3. Then there exists a *c* in [1,3] such that $f'(c) = \frac{1}{3}$ so $f'(c) = \frac{1}{c^2} = \frac{1}{3}$ solving we get that $c = \pm \sqrt{3}$ since $+\sqrt{3}$ is in the interval (1,3) so $c = +\sqrt{3}$

Calculus

L' Hospital's Puls
L' Hospital's Rule pg 305 Stewart 8th edition
L'Hospital's Rule : $\lim_{x \to a} \frac{f(x)}{g(x)} = \lim_{x \to a} \frac{f'(x)}{g'(x)}$
If you are asked to take the limit of a rational equation of the form $\lim_{x\to a} \frac{f(x)}{g(x)}$
such that the limit is an ""Indeterminate Form" or of the form $\frac{\infty}{\infty}$ or $\frac{0}{0}$
1. First take the limit of the rational function and show that it is an indeterminate form:
$\lim_{x \to a} \frac{f(x)}{g(x)} = \frac{\infty}{\infty} \text{ or } \lim_{x \to a} \frac{f(x)}{g(x)} = \frac{0}{0}$
2. Then take the derivative of the numerator and the denominator separately and take the limit:
Find $\lim_{x\to a} \frac{f'(x)}{g'(x)}$
3. If the limit gos to a number N , 0, or ∞ then that is your answer.
if it gives another indeterminate form i.e. $\frac{\infty}{\infty}$ or $\frac{0}{0}$
then repeat the process until the limit goes to a number, 0 or ∞ .
Example: $\lim_{x\to\infty} \frac{\ln(x)}{x}$
1. Show that the limit gives an indeterminate form: $\lim_{x\to\infty} \frac{\ln(x)}{x} = \frac{\infty}{\infty}$
2. Take the derivative of the numerator and denominator separately. $\frac{dy}{dx}ln(x) = \frac{1}{x}$ and $\frac{dy}{dx}x = 1$
3. Take the limit of $\lim_{x \to a} \frac{f'(x)}{g'(x)}$ $\lim_{x \to \infty} \frac{1}{x} = \frac{1}{\infty} = 0$

